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1. Introduction

Anomaly mediation ( AM) [1]–[24] as the main source of supersymmetry breaking is an

attractive idea. In AM, the soft supersymmetry-breaking φ∗φ masses, φ3 couplings and

gaugino masses are all determined by the appropriate power of the gravitino mass multi-

plied by perturbatively calculable functions of the dimensionless couplings of the under-

lying supersymmetric theory. Moreover these functions are RG invariant; that is, their

renormalisation scale dependence is correctly given by the renormalisation scale depen-

dence of the dimensionless couplings. To put it another way, the AM predictions are

UV-insensitive [18].

In recent papers we have explored a specific version of AM, where the tachyonic slepton

problem characteristic of a minimal implementation of AM is solved by means of an addi-

tional U1 gauge symmetry, U ′
1, that is broken at high energies. The scale of this breaking

may be set by a Fayet-Iliopoulos (FI) D-term [23] or via dimensional transmutation [24].

In the former case we showed how it is quite natural for the effects of U ′
1 to decouple at low

energies apart from contributions to the scalar masses, of the form of U ′
1 FI terms, which

are automatically of the same order as the AM ones. In the latter we argued that it was

possible to dispense with an explicit FI term, generating the U ′
1 breaking scale via dimen-

sional transmutation, exploiting a flat D-term direction. In our explicit model, the low

energy theory consisted of the usual MSSM fields with an additional gauge singlet chiral

supermultiplet which is weakly coupled to the MSSM fields;1 the possible cosmological and

1The existence of this light field is in fact a consequence of general arguments concerning AM decoupling

given by Pomarol and Rattazzi [3].
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phenomenological implications (in particular the possibility that its fermionic component

might be the LSP) remain to be discussed. In this paper we will confine ourselves to the

first possibility, where the low energy theory simply consists of the MSSM fields.

In both the above scenarios, there is, however, a subtlety with regard to the afore-

mentioned RG invariance, concerning the Fayet-Iliopoulos term associated with the SM

(or MSSM) U1, USM
1 . Suppose for simplicity the U ′

1 breaking scale coincides with the

gauge unification scale MX , and that the USM
1 FI term is zero there. It turns out that the

presence of the U ′
1 FI terms in the effective field theory means that even though it is zero at

MX , the USM
1 FI term can become significant in the evolution to low energies. Thus there

will be contributions of FI form for both the U ′
1 and the USM

1 to the scalar masses. Now as

emphasised in ref. [20], these two contributions can be reparametrised into a contribution

of the form of a single U ′′
1 FI-term. It should now be clear, however, that the resulting form

of this contribution will be a function of scale since the size of the USM
1 FI term generated

is a function of scale.

The upshot is that if we choose a U ′
1 with charges for the lepton doublets and singlets

chosen so as to solve the tachyonic slepton problem, and also zero FI term for USM
1 at MX ,

the resulting spectrum will correspond to a nonzero FI term for USM
1 at MZ , or a zero FI

term for USM
1 at MZ with a different pair of U ′

1 leptonic charges.

In this paper we shall firstly explain this issue in some detail and then repeat some of

the precision calculations of ref. [23] but now imposing boundary conditions at MX , and

taking the opportunity to update input values and correct some minor bugs in our previous

analysis.

In the second part of the paper we consider a variation of the same idea where we

augment the theory in a minimal way so as to render the U ′
1 charge assignments compatible

with a GUT embedding; specifically SU5, SO10 or E6. Even with the assumption that the

low energy theory below MX consists only of the MSSM fields, the resulting allowed region

for the leptonic charges and the sparticle spectrum is quite different from the previous case.

We also derive some mass sum rules independent of the U ′
1 charges for this case, similar

to the sum rules given in refs. [17, 23].

2. The general case

First of all, for completeness and to establish notation, let us recapitulate some standard

results. We take an N = 1 supersymmetric gauge theory with gauge group ΠαGα and with

superpotential

W (Φ) =
1

6
Y ijkΦiΦjΦk +

1

2
µijΦiΦj . (2.1)

We also include the standard soft supersymmetry-breaking terms

LSB = −(m2)jiφ
iφj −

(

1

6
hijkφiφjφk +

1

2
bijφiφj +

1

2
Mλλ + h.c.

)

(2.2)

where φi = (φi)
∗.
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For the moment let us assume that the gauge group has one abelian factor, which we

shall take to be G1. We shall denote the hypercharge matrix for G1 by Y i
j = Yjδi

j and

its gauge coupling by g1.

At one loop we have

16π2β(1)
gα

= g3
αQα = g3

α [T (Rα) − 3C(Gα)] , (2.3a)

16π2γ(1)i
j = P i

j =
1

2
Y iklYjkl − 2

∑

α

g2
α[C(Rα)]ij . (2.3b)

Here βgα
are the gauge β-functions and γ is the chiral supermultiplet anomalous dimension,

Rα is the group representation for Gα acting on the chiral fields, C(Rα) the corresponding

quadratic Casimir and T (Rα) = (rα)−1Tr[C(Rα)] , rα being the dimension of Gα. For the

adjoint representation, C(Rα) = C(Gα)Iα, where Iα is the rα × rα unit matrix. Obviously

T (R1) = Tr[Y2], [C(R1)]
i
j = (Y2)ij and C(G1) = 0. At two loops we have

(16π2)2β(2)
gα

= 2g5
αC(Gα)Qα − 2g3

αr−1
α Tr [PC(Rα)] , (2.4)

(16π2)2γ(2)i
j = 2

∑

α

g4
αC(Rα)ijQα −

[

YjmnY mpi + 2
∑

α

g2
αC(Rα)pjδ

i
n

]

Pn
p. (2.5)

The one-loop β-functions for the soft-breaking couplings are given by

16π2β
(1)ijk
h = U ijk + Ukij + U jki, (2.6a)

16π2β
(1)ij
b = V ij + V ji, (2.6b)

16π2[β
(1)
m2 ]

i
j = W i

j , (2.6c)

16π2β
(1)
Mα

= 2g2
αQαMα, (2.6d)

where

U ijk = hijlP k
l + Y ijlXk

l,

V ij = bilP j
l +

1

2
Y ijlYlmnbmn + µilXj

l,

W j
i =

1

2
YipqY

pqn(m2)jn +
1

2
Y jpqYpqn(m2)ni + 2YipqY

jpr(m2)qr

+hipqh
jpq − 8

∑

α

g2
αMαM∗

αC(Rα)j i, (2.7)

with

Xi
j = hiklYjkl + 4

∑

α

g2
αMαC(Rα)ij. (2.8)

We have excluded from eq. (2.6c) a D-tadpole contribution which arises if we calculate

with the auxiliary field D eliminated. If we work in the D-eliminated form of the theory

then we have instead of eq. (2.6c):

16π2[β
(1)
m2 ]

i
j → W i

j + 2g2Y i
jTr[Ym2]. (2.9)
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This extra contribution is only nonvanishing in a theory whose gauge group has an abelian

factor. It can be equivalently viewed as a renormalisation of the Fayet-Iliopoulos parameter,

as we shall now describe.

In N = 1 supersymmetric gauge theories whose gauge group has an abelian factor,

there exists a possible invariant that is not otherwise allowed: the Fayet-Iliopoulos D-

term,

L = ξ

∫

V (x, θ, θ̄) d4θ = ξD(x). (2.10)

The significance of the ξ term is of course well known. The part of the scalar potential

dependent on the U1 D-field is

VD = −
1

2
D2 − D

(

ξ + g1φiY
i
jφ

j
)

, (2.11)

which upon elimination of the auxiliary field D becomes

VD =
1

2
(ξ + g1φiY

i
jφ

j)2, (2.12)

so that to obtain a supersymmetric ground state we require at least one field φi to have

a charge with the opposite sign to ξ, and to develop a vacuum expectation value. Thus

for supersymmetry to be unbroken on the scale set by ξ it is necessarily the case that the

corresponding U1 is spontaneously broken. In ref. [23] we showed that in the presence

of anomaly mediation soft supersymmetry-breaking terms it is quite natural for the U1

symmetry to be broken at a large scale characterised by ξ while all scalars receive, from the

U1 D-term, (mass)2 contributions characterised by the gravitino (or anomaly mediation)

mass.

In previous papers [25]–[27] we have discussed the renormalisation of ξ in the presence

of the soft terms. The result for βξ is as follows:

βξ =
βg

g
ξ + β̂ξ (2.13)

where β̂ξ is determined by V -tadpole (or in components D-tadpole) graphs, and is inde-

pendent of ξ.

We found that

16π2β̂
(1)
ξ = 2g1Tr

[

Ym2
]

, (2.14)

16π2β̂
(2)
ξ = −4g1Tr

[

Ym2γ(1)
]

. (2.15)

The three-loop contribution was computed in ref. [26] for an abelian theory and for the

MSSM in ref. [27].
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3. The AM solution

Remarkably the following results are RG invariant [8]:

Mα = m0βgα
/gα, (3.1a)

hijk = −m0β
ijk
Y , (3.1b)

(m2)ij =
1

2
m2

0µ
d

dµ
γi

j , (3.1c)

bij = κm0µ
ij − m0β

ij
µ . (3.1d)

Here βY is the Yukawa β-function, given by

βijk
Y = γi

lY
ljk + γj

lY
ilk + γk

lY
ijl, (3.2)

with a similar expression for βij
µ . It must be emphasised that the RG invariance of eq. (3.1c)

holds in the D-uneliminated theory. That is to say, given eq. (3.1a)-(3.1d) it follows that

βm2 =
1

2
m2

0µ
d

dµ

(

µ
d

dµ
γ

)

(3.3)

where in eq. (3.3), βm2 does not include D-tadpole contributions (that is, at one loop it is

given by eq. (2.6c)); the renormalisation of these is dealt with separately by βξ, as described

in the last section.

Note the arbitrary parameter κ in eq. (3.1d); its presence means that we can, in the

MSSM, follow the usual procedure whereby the Higgs B-parameter is determined (along

with the µ-term) by the electroweak minimisation. How natural is this procedure is an

obvious question, to which we will return later.

The approach to the AM tachyonic slepton problem that we will follow is based on

the fact that RG invariance is preserved if we replace (m2)ij in eq. (3.1c) by

(m2)ij =
1

2
m2

0µ
d

dµ
γi

j + k′(Y ′)ij , (3.4)

where k′ is a constant and Y ′ is a matrix satisfying

(Y ′)ilY
ljk + (Y ′)j lY

ilk + (Y ′)klY
ijl = 0 (3.5)

and

Tr
[

Y ′C(Rα)
]

= 0, (3.6)

in other words Y ′ is a hypercharge matrix corresponding to a U1 symmetry (which we shall

denote U ′
1) with no mixed anomalies with the SM gauge group. This U ′

1 may in general

be gauged, or a global symmetry.

The MSSM (including right-handed neutrinos) admits two independent generation-

blind anomaly-free U1 symmetries. The possible charge assignments are shown in table 1.

Of course the k′Y ′ term in eq. (3.4) corresponds in form to a FI D-term; we shall assume

that in fact the associated U ′
1 gauge symmetry is broken at high energy and that the above
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Q uc dc H1 H2 νc

−1
3L −e − 2

3L e + 4
3L −e − L e + L −2L − e

Table 1: Anomaly free U1 charges for arbitrary lepton doublet and singlet charges L and e respec-

tively. USM
1

corresponds to L = −1/2 and e = 1.

contributions to the scalar masses are the only relic of this breaking that survive in the low

energy effective field theory. That this is a perfectly natural scenario was demonstrated

in ref. [23].

Now let us consider a possible FI term ξD associated with the SM (or MSSM) U1,

USM
1 . Here ξ is an independent parameter respecting all the symmetries of the MSSM; in

the vast majority of analyses using, for example, CMSSM boundary conditions at gauge

unification, it is assumed to be zero there. (For an exception, in which ξ is treated as an

extra independent parameter at low energy, see ref. [28]). Working in the D-eliminated

formalism, the effect of radiative generation of an FI term as we run down to low scales is

then automatically taken care of by the term added in eq. (2.9) (and corresponding terms

at higher loops). If, on the other hand we work with the D-uneliminated formalism then

obviously if we assume ξ is zero at gauge unification then it is calculable at low energies

using βξ from eqs. (2.14), (2.15). The resulting additional contributions to the masses

from eq. (2.12) will of course lead to precisely the same results for the masses as obtained

directly from the running of the masses using the D-eliminated formalism.

How large the radiatively generated ξ is depends on the boundary conditions we assume

for the scalar masses at gauge unification. Let us consider first the standard CMSSM

(or MSUGRA) picture. In that case it is clear that with the assumption of a common

scalar mass at gauge unification, β
(1)
ξ vanishes there because USM

1 is free of gravitational

anomalies:

Tr[Y] = 0. (3.7)

Moreover, and less obviously, β
(1)
ξ is in fact RG invariant; that is, using eq. (2.6c) in

eq. (3.8) we find that

Tr
[

Yβ
(1)
m2

]

= 0 (3.8)

where we denote the SM hypercharge by Y. This follows because Y naturally satisfies

eq. (3.5), (with Y ′ replaced by Y):

Y i
lY

ljk + Yj
lY

ilk + Yk
lY

ijl = 0 (3.9)

(similarly for hijk) and anomaly cancellation,

Tr [YC(Rα)] = 0. (3.10)

So for CMSSM boundary conditions, or indeed any boundary conditions such that

Tr
[

Ym2
]

= 0 at gauge unification, then, in the one-loop approximation, ξ is zero at low

energy if it is zero at gauge unification. (If we go beyond one loop then a non-zero but

quite small ξ will be generated.)

– 6 –
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We turn now to the AM scenario. Substituting eq. (3.4) in eq. (2.14) and eq. (2.15)

we find that up to two loops we can write

16π2β̂ξ = g1|m0|
2

(

µ
d

dµ
Tr[Y(γ − γ2)] + 2k′Tr[YY ′(1 − 2γ)]

)

, (3.11)

and since gauge invariance and anomaly cancellation combined with eqs. (2.3b) and (2.5)

yield [25]

Tr[Yγ(1)] = Tr[Y(γ(2) − (γ(1))2)] = 0, (3.12)

this reduces to

16π2β̂ξ = 2k′g1|m0|
2Tr[YY ′(1 − 2γ)]. (3.13)

Thus in the absence of the Y ′ term (i.e. with the unmodified mass solution of eq. (3.1c)) an

appreciable USM
1 FI term will not be generated by the running, and eq. (3.1c) will therefore

be RG invariant. This was the conclusion of ref. [27].

Using eq. (3.4) however, we obtain eq. (3.13), which is non-vanishing even at leading

order unless we choose the charges Y ′ so that

Tr[YY ′] = 0. (3.14)

This was in fact the choice made in ref. [17], the motive there being to suppress kinetic

mixing between the USM
1 and the U ′

1 gauge bosons (in that paper we considered a U ′
1

broken at rather lower energies). With such a U ′
1, the Y ′ charges L and e satisfy

3L + 7e = 0 (3.15)

so they are opposite in sign. Consequently eq. (3.4) alone would not suffice to escape the

tachyonic slepton problem (if it held at low energy). In ref. [17] it was shown, however,

that replacing eq. (3.4) by

(m2)ij =
1

2
m2

0µ
d

dµ
γi

j + k(YSM )ij + k′(Y ′)ij , (3.16)

(with Y ′ charges satisfying eq. (3.15)) could do so. Now since we have shown above that

an effective USM
1 FI-term is in any event generated by RG running, it is not a priori

obvious that having simply eq. (3.4) at gauge unification even with a U ′
1 with opposite

L, e charges won’t work; however we may expect that the U ′
1 choice of ref. [17] clearly will

not do, precisely because of eq. (3.14); the generated ξ for USM
1 will be too small. We

shall see that this is indeed the case. One might hope that it would be possible to choose,

for example, U ′
1 ≡ UB−L

1 ; we shall see, however, that, with eq. (3.4), although the region

of (e, L) parameter space corresponding to an acceptable supersymmetric spectrum does

indeed include the possibility of L < 0, it permits neither eq. (3.14) nor L + e = 0, which

would have corresponded to UB−L
1 .

Let us now follow ref. [23] by considering a theory with FI-type contributions associated

with U ′
1, and compare the consequences of imposing eq. (3.4) (and vanishing FI term for

USM
1 ) at (i) gauge unification (ii) a common SUSY scale, MSUSY. It should be clear from

– 7 –
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the above discussion that using the same values of (e, L) in the two cases will not give rise

to the same spectrum, because imposing it at gauge unification (say) will give rise to a

non-vanishing USM
1 FI term at MSUSY, and corresponding contributions to the sparticle

masses.

It is easy to see, however, that precisely the same spectrum consequent on a particular

choice of (e, L) at at MX can be obtained by by using a different (e, L) pair at MSUSY

(with in each case no USM
1 FI term). This is simply because we can write

m2
L = m2

L −
1

2
k + k′L = m2

L + k′′L′′

m2
ec = m2

ec + k + k′e = m2
ec + k′′e′′

m2
Q = m2

Q +
1

6
k + k′Q = m2

Q + k′′Q′′ etc., (3.17)

where k′′Q′′ = −k′′ 1
3L′′, etc.

Thus we can absorb the USM
1 FI term generated by the running into a redefinition of

the charges (e, L).

Note that the above remarks strictly apply only if we evaluate the spectrum at a

common mass scale, MSUSY. Since in ref. [23] we systematically evaluated each sparticle

pole mass at a renormalisation scale equal to the pole mass itself, small discrepancies were

introduced. From now on we will always calculate spectra by running down from MX ,

inputting (e, L) (and zero for the USM
1 FI term) there.

4. The MSSM and the sparticle spectrum

The MSSM is defined by the superpotential:

W = H2QYtt
c + H1QYbb

c + H1LYττ
c + µH1H2 (4.1)

with soft breaking terms:

LSOFT =
∑

φ

m2
φφ∗φ +

[

m2
3H1H2 +

3
∑

i=1

1

2
Miλiλi + h.c.

]

+ [H2Qhtt
c + H1Qhbb

c + H1Lhττ
c + h.c.] (4.2)

where in general Yt,b,τ and ht,b,τ are 3 × 3 matrices. We work throughout in the approx-

imation that the Yukawa matrices are diagonal, and neglect the Yukawa couplings of the

first two generations.

The anomalous dimensions of the Higgses and 3rd generation matter fields are given

– 8 –
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(at one loop) by

16π2γH1
= 3λ2

b + λ2
τ −

3

2
g2
2 −

3

10
g2
1 ,

16π2γH2
= 3λ2

t −
3

2
g2
2 −

3

10
g2
1 ,

16π2γL = λ2
τ −

3

2
g2
2 −

3

10
g2
1 ,

16π2γQ = λ2
b + λ2

t −
8

3
g2
3 −

3

2
g2
2 −

1

30
g2
1 ,

16π2γtc = 2λ2
t −

8

3
g2
3 −

8

15
g2
1 ,

16π2γbc = 2λ2
b −

8

3
g2
3 −

2

15
g2
1 ,

16π2γτc = 2λ2
τ −

6

5
g2
1 , (4.3)

where λt,b,τ are the third generation Yukawa couplings. For the first two generations we

use the same expressions but without the Yukawa contributions. The two and three loop

results for the anomalous dimensions and the gauge β-functions may be found in ref. [29].

The soft scalar masses are given by

m2
Q = m2

Q −
1

3
Lk′, m2

tc = m2
tc −

(

2

3
L + e

)

k′,

m2
bc = m2

bc +

(

4

3
L + e

)

k′, m2
L = m2

L + Lk′,

m2
τc = m2

τc + ek′, m2
H1,2

= m2
H1,2

∓ (e + L)k′, (4.4)

(with similar expressions for the first two generations) where m2
Q etc are the pure anomaly-

mediation contributions, for example:

m2
Q =

1

2
m2

0µ
d

dµ
γQ =

1

2
m2

0βi
∂

∂λi
γQ (4.5)

(here λi includes all gauge and Yukawa couplings) and k′ is the effective FI parameter.

The 3rd generation A-parameters are given by

At = −m0(γQ + γtc + γH2
),

Ab = −m0(γQ + γbc + γH1
),

Aτ = −m0(γL + γτc + γH1
) (4.6)

and we set the corresponding first and second generation quantities to zero. The gaugino

masses are given by

Mα = m0

(

βgα

gα

)

, for α = 1, 2, 3. (4.7)

The manner in which the scale of the effective FI parameter contributions k′L etc. to the

sparticle masses can naturally be of the same order as the anomaly mediation contributions

when a U ′
1 is broken at high energies is explained in ref. [23] and ref. [24].
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e

L

Figure 1: The region of (e, L) space corresponding to an acceptable electroweak vacuum, for

m0 = 40TeV and tanβ = 10.

Clearly these FI contributions depend on two parameters, Lk′ and ek′. For notational

simplicity we will set k′ = 1(TeV)2 from now on.

We begin by choosing input values for m0, tan β, L, e and signµ at MX and then

we calculate the appropriate dimensionless coupling input values at the scale MZ by an

iterative procedure involving the sparticle spectrum, and the loop corrections to α1···3, mt,

mb and mτ , as described in ref. [30]. We define gauge unification by the meeting point of

α1 and α2. For the top quark pole mass we use mt = 170.9GeV.

We then determine a given sparticle pole mass by running the dimensionless couplings

up to a certain scale chosen (by iteration) to be equal to the pole mass itself, and then using

eqs. (4.5), (4.6), (4.7) and including full one-loop corrections from ref. [30], and two-loop

corrections to the top quark mass [31].

As in ref. [32], we have compared the effect of using one, two and three-loop anomalous

dimensions and β-functions in the calculations. Note that when doing the three-loop

calculation, we use in eq. (4.5), for example, the three loop approximation for both βi

and γQ, thus including some higher order effects.

The allowed region in (e, L) space for µ > 0 and m0 = 40TeV corresponding to an

acceptable vacuum is shown in figure 1. To define the allowed region, we have imposed

mτ̃ > 82GeV, mν̃τ
> 49GeV and mA > 90GeV. The region is to a good approximation

triangular, with one side of the triangle corresponding to mA becoming too light (and
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quickly imaginary just beyond the boundary, with breakdown of the electroweak vacuum)

and the other two sides to one of the sleptons (usually a stau) becoming too light.

Note that as we remarked earlier, the allowed region includes parts with L < 0. To

understand this, consider, for example, the point (e, L) = (0.35,−0.05). For this point we

find that

Tr[YY ′] = 4.6. (4.8)

This is positive so from eq. (3.13) we see that βξ for the USM
1 FI term is positive at MX .

Since we are running down from MX it follows that a negative ξSM is generated, and hence

a positive contribution to m2
L, since the USM

1 charge of the lepton doublet is negative.

Evidently the same reasoning means that we cannot have e < 0 at MX , as we indeed see

to be the case.

Although L < 0 is allowed, it is easily seen that we cannot, as we mentioned earlier,

have either L+e = 0 (corresponding to UB−L
1 ) or 3L+7e=0 (corresponding to Tr[YY ′]=0).

As an example of an acceptable spectrum, we give in table 2 the results for m0 =

40TeV, tan β = 10, L = 0, e = 1/4, signµ = + as derived using the one, two and three loop

approximations for the anomalous dimensions and β-functions.

This point in (e, L) space is near the centre of the allowed region (see figure 1). As

explained in the previous section, the same spectrum would be obtained to a good ap-

proximation by inputting parameters and calculating pole masses at MZ with a different

pair of (e, L) values, in this case (e, L) ≈ (0.06, 0.09). This point is near the centre of the

allowed region in figure 1 of ref. [23]. In table 2, however, we give the masses with each

calculated at a scale equal to its pole mass. Therefore as explained before, this means the

whole spectrum corresponds to choosing the FI USM
1 term to be zero at MZ , but to a set

of (e, L) close to but each differing slightly from (0.06, 0.09).

For the choice of parameters leading to table 2, we find that µ ∼ 576GeV and B ∼

(140GeV)2, leading to κ ∼ 0.008. We see that, aside from the little hierarchy problem

associated with the fact that µ ≫ MZ , we have the problem of accounting for the small

value of κ, and a degree of fine tuning between the two terms in eq. (3.1d). As in ref. [23]

we find that to obtain a sufficiently high light CP-even Higgs mass, mh and an electroweak

vacuum we need to have 25 >
∼ tan β >

∼ 8.

For discussion of AM characteristic phenomenology the reader is referred to refs. [1]–

[24], and in particular ref. [4].

5. U1 and GUTs

In the previous sections we have been assuming that our theory has gauge group GSM⊗U ′
1,

broken to GSM at high energies. Let us now ask what modifications ensue if we ask for

compatibility with a simple GUT embedding; for definiteness let us take SU5, and imagine

that our matter fields form a set of nf (5+ 10) multiplets as usual, and promote our Higgs

multiplets to nh sets of (5 + 5). Then for compatibility with an SU5 ⊗ U ′
1 embedding we
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mass (GeV) 1loop 2loops 3loops

g̃ 925 900 897

t̃1 766 757 746

t̃2 502 500 487

ũL 834 819 808

ũR 774 766 753

b̃1 724 712 702

b̃2 956 946 936

d̃L 838 822 812

d̃R 965 955 946

τ̃1 267 266 266

τ̃2 212 199 199

ẽL 262 261 262

ẽR 225 212 212

ν̃e 250 249 249

ν̃τ 248 247 247

χ1 106 131 131

χ2 354 362 362

χ3 569 593 585

χ4 580 604 596

χ±
1 107 131 131

χ±
2 577 601 594

h 114 114 114

H 333 373 361

A 333 373 361

H± 342 381 370

χ±
1 − χ1 (MeV) 226 235 237

Table 2: Mass spectrum for mt = 170.9GeV, m0 = 40TeV, tanβ = 10, L = 0, e = 1/4.

at once have the relations

Q = uc = e

dc = L (5.1)

and for U ′
1 invariance of the Yukawa terms

h1 = −L − e

h2 = −2e

νc = 2e − L. (5.2)

Then the SU2
3 ⊗ U ′

1, SU2
2 ⊗ U ′

1 and (USM
1 )2 ⊗ U ′

1 anomalies are all proportional to the
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10 5 νc H H N

e L 2e − L −2e −e − L L + 3e

Table 3: Anomaly free U1 symmetry for arbitrary lepton doublet and singlet charges.

quantity

A1 = (nf − nh)(L + 3e) (5.3)

while the (U ′
1)

2 ⊗ USM
1 anomaly vanishes. The (U ′

1)
3 anomaly is proportional to

A3 = (L + 3e)
[

5(nf − nh)(L2 + 3e2) − nf (L + 3e)2
]

(5.4)

while the U ′
1 − gravitational anomaly is proportional to

AG = (L + 3e)(4nf − 5nh). (5.5)

Thus if L + 3e = 0 then the GSM ⊗ U ′
1 theory is anomaly-free for arbitrary nf , nh. This

special case corresponds in fact to compatibility with the embedding SO10 ⊃ SU5 ⊗ U ′
1

with each set of matter fields forming a 16 and each set of Higgs fields a 10 under SO10.

(Although SO10 has complex representations they are all anomaly-free). Note the opposite

sign charges for L and e; we argued in section 3 that this does not preclude starting from

MX with an FI term for such a U ′
1, but we shall see that the line L+3e = 0 does not cross

the allowed (e, L) region for our class of models. The other way to produce an anomaly-free

theory is to first set nh = nf . Then A1 = 0 while for A3 and AG we have

A3 = −nf(L + 3e)3

AG = −nf(L + 3e) (5.6)

so that we can obtain an anomaly-free theory by adding a further set of nf GSM-singlet

fields N , with charges L + 3e. The resulting charge assignments are shown in table 3.

This structure is compatible with SU5 ⊗U ′
1, and can be embedded in E6, when table 3

forms a 27. (Recall that E6 also has only anomaly-free representations). If L = e we could

have E6 ⊃ SO10 ⊗U ′
1, (with table 3 forming a 16⊕10⊕1 of SO10), or, as explained above,

for L = −3e we could have SO10 ⊃ SU5 ⊗ U ′
1. Another possibility is to have L = 2e, in

order that νc have zero U ′
1 charge [33]; evidently this would have model-building advantages

if one wants to have a large mass for νc while breaking U ′
1 at lower energy. Of course one

sees easily that the cases L = −3e and L = 2e are equivalent from a group theoretic point

of view under the exchanges N ↔ νc and 5 ↔ H; obviously in the latter case we could

have an anomaly-free theory with nf sets of (10,H,N) and nh sets of (H, 5).

Let us now suppose that, whatever the nature of the underlying theory, below gauge

unification we have the usual MSSM effective field theory, with three generations and a

single pair of Higgs doublets (of course an explicit construction may lead to a more exotic

low energy theory, but here we will confine ourselves to this possibility). We also assume FI

contributions to the sparticle masses corresponding to our new U ′
1, thus instead of eq. (4.4)
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Figure 2: The region of (e, L) space corresponding to an acceptable electroweak vacuum, for

m0 = 40TeV and tanβ = 15.

we have:

m2
Q = m2

Q + ek′, m2
tc = m2

tc + ek′, m2
τc = m2

τc + ek′,

m2
bc = m2

bc + Lk′, m2
L = m2

L + Lk′,

m2
H1

= m2
H1

− (e + L)k′, m2
H2

= m2
H2

− 2ek′, (5.7)

where m2
Q etc are again the pure anomaly-mediation contributions, and once again we set

k′ = 1.

We can then compare the predicted sparticle spectrum with that obtained in the last

section. We may expect there to be differences, since evidently if we have both (e, L) > 0

it is now the case that both squarks and sleptons will have positive (mass)2 contributions.

We calculate the spectrum as described in the previous section, running down from MX ; of

course RG invariance of the AM masses no longer holds because the effective field theory

is no longer anomaly-free with respect to the U ′
1.

The allowed (e, L) region with our new charge assignments is shown in figure 2. Com-

paring with figure 1, we see that the most dramatic difference is that increasing (e, L) does

not lead to loss of the electroweak vacuum as long as L <
∼ e + 0.4. Of course increasing

(e, L) scales up the squark and slepton masses, |mH2

1,2
| and hence the (Higgs) µ-parameter,

thus increasing the fine-tuning known as the little hierarchy problem. Other scenarios ex-

plored recently have also had this feature, for example split supersymmetry [34], and the
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mass (GeV) 1loop 2loops 3loops

g̃ 966 940 938

t̃1 1063 1047 1040

t̃2 936 923 917

ũL 1103 1081 1073

ũR 1102 1085 1077

b̃1 1038 974 1013

b̃2 993 1021 966

d̃L 1105 1084 1076

d̃R 1032 1014 1005

τ̃1 550 544 544

τ̃2 698 697 697

ẽL 556 551 551

ẽR 698 697 697

ν̃e 550 545 545

ν̃τ 548 542 543

χ1 111 135 135

χ2 362 369 369

χ3 1204 1211 1207

χ4 1206 1213 1209

χ±
1 111 135 136

χ±
2 1207 1214 1210

h 115 115 115

H 737 743 737

A 737 743 737

H± 742 748 742

χ±
1 − χ1 (MeV) 185 192 192

Table 4: Mass spectrum for mt = 170.9GeV, m0 = 40TeV, tan β = 15, L = 1/3, e = 1/2.

G2 based model of ref. [35]. For a recent discussion of the little hierarchy problem see (for

example) ref. [36].

Another distinctive feature of the new charge assignment is that acceptable spectra

are obtained with larger values of tan β than in section 4; here we find an upper limit of

tan β = 43.

In table 4 we give results for the sparticle spectrum for a representative point in the

allowed region. Of course L = 1/3 and e = 1/2 represent significant contributions to the

squark squared masses, which are in any case already positive in AM, so it is not surprising

that these masses are quite large for this point. Correspondingly the value of µ determined

from electroweak minimisation is quite high at around 1TeV.

Both L = e (corresponding to a potential SO10 ⊗ U ′
1 embedding) and L = 2e (corre-
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mass (GeV) 1loop 2loops 3loops

g̃ 934 910 907

t̃1 858 847 838

t̃2 688 680 672

ũL 908 891 881

ũR 911 899 889

b̃1 803 789 780

b̃2 894 882 872

d̃L 911 894 885

d̃R 916 904 894

τ̃1 236 231 231

τ̃2 311 308 308

ẽL 282 275 275

ẽR 282 281 281

ν̃e 270 263 263

ν̃τ 266 259 259

χ1 109 133 134

χ2 358 365 365

χ3 820 833 828

χ4 826 839 834

χ±
1 109 134 134

χ±
2 826 839 834

h 115 115 115

H 623 635 629

A 624 636 629

H± 629 641 634

χ±
1 − χ1 (MeV) 192 199 200

Table 5: Mass spectrum for mt = 170.9GeV, m0 = 40TeV, tan β = 15, L = e = 0.1.

sponding to zero U ′
1 charge for νc) are allowed; in the latter case we would need to have

e <
∼ 0.4. In table 5 we give results for the sparticle spectrum for L = e = 0.1, while in

table 6 we give results for the sparticle spectrum for L = 2e = 0.1.

6. Mass sum rules

By taking appropriate linear combinations of squark and slepton (masses)2 so that the

(e, L) contributions cancel it is straightforward to derive a pair of interesting sum rules

– 16 –



J
H
E
P
1
0
(
2
0
0
7
)
0
7
0

mass (GeV) 1loop 2loops 3loops

g̃ 930 906 903

t̃1 828 818 809

t̃2 650 642 633

ũL 880 864 854

ũR 884 873 863

b̃1 771 759 749

b̃2 893 882 872

d̃L 883 868 857

d̃R 916 905 895

τ̃1 290 285 285

τ̃2 131 126 127

ẽL 284 278 278

ẽR 165 162 162

ν̃e 272 266 266

ν̃τ 268 262 262

χ1 109 133 133

χ2 358 365 365

χ3 759 774 768

χ4 766 780 775

χ±
1 109 133 134

χ±
2 765 780 775

h 115 115 115

H 585 599 591

A 585 599 592

H± 591 604 597

χ±
1 − χ1 (MeV) 195 203 203

Table 6: Mass spectrum for mt = 170.9GeV, m0 = 40TeV, tan β = 15, L = 2e = 0.1.

similar to those we derived [17, 23], with the original charge assignments of section 4:

m2
ũL

+ m2
d̃L

− m2
ũR

− m2
ẽR

≈ 0.8 (mg̃)
2 ,

m2
A + sec 2β

(

m2
ẽR

− m2
ẽL

)

− 2M2
W +

5

2
M2

Z ≈ 0.5 (mg̃)
2 ,

m2
b̃1

+ m2
b̃2
− m2

τ̃1
− m2

τ̃2
≈ 1.5 (mg̃)

2 ,

m2
b̃1

+ m2
b̃2
− m2

eL
− m2

eR
≈ 1.5 (mg̃)

2 ,

m2
dL

+ m2
dR

− m2
eL

− m2
eR

≈ 1.8 (mg̃)
2 . (6.1)

Although these sum rules are derived using the tree results for the various masses

they hold reasonably well for the physical masses. The numerical coefficients on the r.h.s.
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of eq. (6.1) are in fact slowly varying functions of tan β; the above results correspond to

tan β = 15.

7. Conclusions

The AM scenario is an attractive alternative to (and distinguishable from) the CMSSM.

With AM it is possible to imagine a theory where the only explicit scale in the effective

field theory is the gravitino mass. An explicit realisation of this idea was given in ref. [24],

where the scale corresponding to the spontaneous breaking of an additional U ′
1 symmetry

(needed to solve the tachyonic slepton problem) was generated by dimensional transmuta-

tion. (This theory had the additional feature of a weakly coupled chiral matter multiplet

whose fermionic component is a dark matter candidate). There is no obstacle in principle

to extending this idea to a Grand Unified Theory, with the unification scale similarly gen-

erated by dimensional transmutation; this idea led us to consider the alternative charge

assignments of section 5. One possibility would be a variation of the inverted hierarchy

model of Witten [37], defined by the superpotential

W = λ1Tr(A2Y ) + λ2X(TrA2 − m2) (7.1)

where A,Y are SU5 adjoints and X is a singlet. In its original form, supersymmetry

is broken spontaneously in the O’Raifertaigh manner; moreover SU5 is broken to SU3 ⊗

SU2 ⊗ U1, with the scale at which this occurs being unrelated to m2, and generated by

dimensional transmutation. Our variation would be to have m2 = 0 in eq. (7.1), with

the SU5 breaking generated in similar fashion2 but the supersymmetry breaking provided

instead by anomaly mediation. We will explore this model in more detail elsewhere.

We have shown that while a U ′
1 gauge symmetry broken at high energies can lead in a

natural way to the FI-solution to the AM tachyonic slepton problem, care must be taken

with regard to the FI term associated with USM
1 . We have also shown how an extension of

the minimal model permits a gauged U ′
1 compatible with grand unification, with, in this

case, sparticle spectra characterised by both heavy squarks and heavy sleptons.
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